
Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

MOTOM toolbox: MOtion Tracking via Optotrak and Matlab

Zoltan Derzsi⁎, Robert Volcic
Department of Psychology, New York University Abu Dhabi, United Arab Emirates

A R T I C L E I N F O

Keywords:
Northern digital
NDI
Optotrak Certus
Optotrak 3020
Matlab
Toolbox
Visuomotor
Virtual reality

A B S T R A C T

We present a Matlab toolbox that allows the user to control and collect data using Northern Digital's Optotrak
system. The Optotrak is a modular motion capture system, which tracks the positions of infrared markers. It also
supports grouping markers together as a single body. The body's position, orientation as well as all the marker
position data can be obtained simultaneously. The installation, set-up and alignment procedures are highly
automated, and thus require minimal human interaction. We provide additional scripts, functions, doc-
umentation and examples to help experimenters integrate the Optotrak system into experiments using recent 64-
bit computers and existing Matlab toolboxes.

1. Introduction

The Optotrak Certus is a highly accurate motion capture system
manufactured by Northern Digital, that has been used in both industry
and academia for almost two decades. It is a camera-based tracker,
which captures the positions of proprietary markers consisting of in-
frared light emitting diodes. The three sensors in a camera are placed
slightly apart, so an active marker will be seen by the sensors at slightly
different angles. For each marker, these 2D sensor data are used to
calculate the 3D position coordinates. While the 3D position data is
useful to the user, the raw data containing the location of the brightest
point in each sensor is available as well their peak sensor values. The
position calculation can only be done for a single marker at a time, so
the Optotrak system uses temporal multiplexing to allow many markers
to be tracked. The markers are being flashed sequentially by the
Strober, which also serves as an interface between the markers and the
System Control Unit (SCU). The SCU is also connected to the cameras,
and it sends data to the host computer for further processing. Every
Optotrak system has at least one camera with three sensors, one SCU, at
least one strober, and many markers. A typical set-up and its operation
is shown in Fig. 1, but it can be scaled up to use up to the use of 10
sensors and up to 512 markers.

An additional interesting feature of the Optotrak system is the
capability to assign markers that have constant distances between each
other. When the markers are permanently attached to an object, it is
possible to track the entire marker group as a single, ‘rigid body’. In this
case, depending on the nature of the marker assignment, the system
returns the calculated centroid coordinates and orientation angles in

addition to the marker coordinates. This can be used to enhance loca-
tion accuracy of the object itself, or to track something else that is
impossible to attach a marker to, but tied together with the rigid body.

To control and gather data from the Optotrak system, Northern
Digital recommends using their own proprietary software, First
Principles. This software, however, does not support automated hard-
ware configuration and data collection: manual interaction is necessary
to configure the system and to start/stop position recording. Northern
Digital released an Application Program Interface (API) written in C
language which allows third-party software to interact with the
Optotrak system, but it requires advanced programming skills to make
use of it. In the field of academic research, Matlab (The MathWorks,
Inc.) is a popular universal tool that allows easy and convenient data
analysis and visualization. Unfortunately, it is our experience that
collecting data via an experiment written in Matlab is particularly
difficult when it is required to interface with proprietary hardware. A
possible way of getting the data into Matlab is to organize collection
separately in an independent system, and write a data importer script
that can be used with the analysis. This approach might be adequate in
applications when no hardware configuration is required during the
experiment, however, in many applications, for example when Matlab
and Psychtoolbox (Kleiner et al., 2007) are mainly used, we perceive
this as a great source of inflexibility, as hardware cannot be accessed
programmatically within an experiment. The continuous interaction
with the Optotrak system has been shown to be very effective in a
number of past studies: for example, when a perturbation needs to be
triggered when the hand is at a certain distance from the starting po-
sition (Hesse and Franz, 2009; Franz et al., 2009; Camponogara and

https://doi.org/10.1016/j.jneumeth.2018.07.007
Received 4 March 2018; Received in revised form 6 July 2018; Accepted 7 July 2018

⁎ Corresponding author.
E-mail address: ha5dzs@gmail.com (Z. Derzsi).

Journal of Neuroscience Methods 308 (2018) 129–134

0165-0270/ © 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/01650270
https://www.elsevier.com/locate/jneumeth
https://doi.org/10.1016/j.jneumeth.2018.07.007
https://doi.org/10.1016/j.jneumeth.2018.07.007
mailto:ha5dzs@gmail.com
https://doi.org/10.1016/j.jneumeth.2018.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2018.07.007&domain=pdf


Volcic, 2017), or when positional information needs to be altered on-
line (van der Kooij et al., 2013; Volcic et al., 2013; Volcic and Domini,
2016), or in the implementation of head position-contingent displays
(Fantoni et al., 2010). This paper presents a Matlab toolbox that allows
communication with the Optotrak system through Matlab's interface.
With it, users can conveniently initialize and automate data collection
without having to leave their Matlab environment, and all hardware
handling is taken care of within its internal functions, transparent to the
user. A requisite to use the toolbox is that the API has to be purchased
from Northern Digital.

2. Why write another Optotrak toolbox?

We are aware of three Optotrak-Matlab interface implementations:
One by Volker Franz (2004), whose approach was to integrate external
C functions into Matlab through the use of Matlab's compiled binary
executable files. A known limitation of this toolbox is that it was pri-
marily written for the older 32-bit systems, and compiling the code
requires being familiar with programming in C as well as being familiar
with the API and a third-party Integrated Development Environment
(IDE). We also found a collection of Matlab scripts available on the
University of British Columbia's Research on Embedded Attention Lab
website, which is written by Craig Chapman (2012), which uses Ma-
tlab's shared library feature to access the API functions directly. How-
ever, it is not possible to access all the data in the form the API prepares
it due to a well documented limitation in Matlab's shared library fa-
cilities. These limitations prevent direct access to the Optotrak data.
The third software we found, which also includes all functions in a
single ‘mex’ file was written by Jarrod Blinch, who published his work
in his blog (Blinch, 2011). Similarly to Volker Franz's toolbox, this also
requires the knowledge of an external IDE. However, a tutorial is given

that shows how to import and compile the code using a specific version
of IDE. Furthermore, the last release of Matlab which worked on a 32-
bit system was the R2015b, and subsequent releases are not capable of
running existing 32-bit binary files. Since Northern Digital have re-
leased the 64-bit Optotrak drivers, and the most up-to-date version of
Psychtoolbox requires 64-bit Matlab, we decided to write a new toolbox
that takes the best ideas from the approaches described above, in the
hope to be able to maximize the number of accessible features of the
Optotrak system. We also took care to ensure reverse-compatibility: an
experiment developed on a 32-bit system that uses our toolbox also runs
on a 64-bit system, without having to modify the Matlab code. With the
additional documentation and examples we include, setting up and
automate data collection with the Optotrak system requires less pro-
gramming skills and it is thus far more convenient than before.

3. Methods

Interfacing with the Optotrak system from Matlab is done via a
recent (3.14 or newer) version of Northern Digital's Optotrak API,
which can be obtained as separate library files for Linux and Windows,
and for 32 and 64 bit systems. During the set-up process, the toolbox
determines the user's operating system and computer architecture, and
the appropriate library file is selected for use. The toolbox presented in
this paper uses a hybrid approach: every documented API function is
available through Matlab's shared library support, but not all of them
provide meaningful results due to Matlab's documented limitations. For
example, additional functions were written in C to convert data orga-
nized in nested structures to Matlab arrays. During the set-up process,
the toolbox will compile all the necessary C code automatically, without
having to manually edit the C code included. However, the automated
compilation process can only be executed once certain requirements are

Fig. 1. The top drawing shows a typical
Optotrak set-up: the camera with three sensors
and the strober are connected to the SCU.
Currently Marker 2 is activated, which is seen
at different angles by the sensors. Bottom: the
markers are temporally multiplexed, showing
that Marker 2 is active right now. The marker
strobing sequence finishes slightly before a
new frame is being captured.

Z. Derzsi, R. Volcic Journal of Neuroscience Methods 308 (2018) 129–134

130



fully met; these requirements include having additional software in-
stalled, and the latest version of the library files copied to the appro-
priate location. The exact steps are included in the documentation of
the toolbox. If there is a problem, the set-up script informs the user
what steps are necessary to resolve it. The toolbox uses external con-
figuration files, which are written in the Windows ‘.ini’ syntax. All
details of data acquisition and the rigid body definitions are specified in
these configuration files, which can be tailored to individual experi-
ments. Should incorrect or impossible settings be given in these files,
the toolbox provides meaningful error messages and advises the user
how to resolve them. The configuration files are not limited to the
toolbox: they are compatible with the proprietary software supplied by
Northern Digital.

3.1. Global coordinate system manipulation

By changing the global coordinate system, the same raw sensor data
obtained by the Optotrak system will be converted to different 3D po-
sitions. The cameras in the Optotrak system use their own factory-set
global coordinate systems, which is useful to have aligned to fit the
needs of an experiment. We repeatedly align it to our experimental
table at which our participants are sitting. To reduce the chance of
marker occlusion, it is possible to add many cameras to track a single
marker. In such cases, the coordinate systems of each camera has to be
registered together to a single coordinate system first, and once the
registration process is done, the newly generated common global co-
ordinate system can be aligned as well. The coordinate system defini-
tions are stored in camera parameter files, which are generated during
each new registration and alignment. Northern digital use their own
terms in their documentation, a brief glossary is included in Table 1.
The registration and alignment processes work by tracking the positions
of a known rigid body. In our implementation, we use the ‘Cubic Re-
ference Emitter’ that is available from Northern Digital, but we have
also included 3D-printable objects and their rigid body definitions that
might be used for this purpose. We have created a script that detects the
number of cameras used in the system, and guides the user through the
registration and alignment process. The user is informed about the
name of the newly generated camera file and the magnitude of the
introduced tracking error in the process.

3.2. Controlling the Optotrak system with the toolbox

While every documented API function is directly available through
the toolbox, we decided to make numerous scripts that are intended to
make everyday tasks easier. These functions are separately docu-
mented, and have names that are easy to remember, some of them are
shown in Appendix A. If only real time data is required, receiving data
is now possible with a single line of code. Functions are also present to
detect marker or coordinate proximity, and to handle data buffering, or
decode and interpret status flags of the Optotrak system. We introduced
simplified data formatting: the functions we wrote in C return the
marker position coordinates and, if selected to do so, the rigid body

transformation data in the form of matrices. Invisible markers and
unsuccessful rigid body transformations are annotated with Matlab's a
not-a-number (NaN) entry, instead of the Optotrak API's less practical
default number (−3.697314×1028). This way, 3D data can be vi-
sualized directly without the need for manual plot boundary adjust-
ments. Furthermore, we added error management: it is now possible to
retrieve the error messages directly from the SCU, and many functions
have built-in sanity checks against user error. The toolbox can store raw
data files, and it is possible to convert the raw data to 3D positions
either immediately after file creation, or at a later date. It is also pos-
sible to execute the conversion within a different coordinate system,
thereby porting data between set-ups, or to convert the raw data within
a completely different coordinate system alignment, which may be
useful when a re-alignment of the global coordinate system is necessary.
The toolbox returns the 3D coordinates in millimeters, and the or-
ientation Euler-angles (roll, pitch, yaw) are in radians. All numbers are
in Matlab's double precision formats. There are functions provided to
visualize marker positions. The marker position plotter function is also
capable of displaying many frames as well, creating spaghetti-like 3D
plots of marker data. This function also allows the update of the figure
real-time, allowing the monitoring of marker coordinates directly. A
simpler function is provided to show which markers are visible, which
can be useful during marker set-up or when designing an experiment.

3.3. Rigid bodies, warp detection

It is possible to create rigid body definition files programmatically
with the toolbox, even during an experiment, provided that the as-
signed set of markers makes a rigid body transform possible. Following
a successful transform, the system will return the body's centroid co-
ordinates and the orientation angles, which the Optotrak documenta-
tion refers to as ‘6D Transform’ and ‘6D data’. The toolbox also has a
function to calculate the centroid coordinates and the orientation an-
gles without a rigid body definition. Functions are also provided to
detect warp, where the distances between the assigned set of markers
and the centroid changed over time due to a loosely attached marker,
for example. Just like the data acquisition settings, the generated rigid
body definition can be stored in external configuration files, and it is
used to determine the orientation angles. Should the user decide to
proceed without the use of the rigid body tracking facility in the
Optotrak system, the toolbox will calculate the orientation angles with
respect to the centroid and a specified marker. In this latter case, it is
the user's responsibility to detect warp, and that the marker from which
the orientation is calculated is always visible to a camera.

3.4. Virtual markers

It is not always possible or practical to attach a marker to a desired
surface. For example, if the position of the fingertips is required, it is
impossible to attach markers to them as it would spoil the sense of
touch and thereby compromise accuracy. One solution is to track a rigid
body that is attached to the fingernail, and then calculate the location of
the fingertip with respect to the rigid body. At the beginning of an
experiment, we create a virtual marker definition using a function in
the toolbox, and we use this definition to calculate the new positions of
the virtual marker. While the toolbox functions are primarily intended
to work with the Optotrak system's rigid body transforms, it is also
possible to use virtual markers in applications where the centroid and
the orientation are manually calculated, without the use of the Optotrak
system's rigid body tracking facility.

4. Installation, documentation, source code availability and
examples

The toolbox is located in our GitHub repository where direct
download option is also available. We have included a detailed wiki-

Table 1
The glossary of some key Optotrak terms.

Term Description

Registration The process of assigning many cameras into a common global
coordinate system.

Alignment The process of assigning the global coordinate system to a rigid
body's local coordinate system.

Raw data Sensor data directly available from the cameras.
3D data The raw sensor data converted to X–Y–Z marker coordinates in the

global coordinate system.
6D data Rigid body data defined in two triplets: the X–Y–Z coordinates of

the rigid body's location, and the Roll–Pitch–Yaw rotation angles.

Z. Derzsi, R. Volcic Journal of Neuroscience Methods 308 (2018) 129–134

131



style documentation. At the time of writing, the toolbox can be
downloaded from: https://github.com/volcic/motom-toolbox.

In addition to the included documentation, there is a help section
for every function in the toolbox. Furthermore, there is a brief in-
troduction for newcomers to the Optotrak system, introduction to rigid
bodies, virtual markers, and to the internal workings of the toolbox. For
experts, there is added documentation for each built-in API function,
including all the status flags and data management. Examples are
provided on how to configure the system, how to handle real-time and
buffered data, rigid bodies, and virtual markers. For rigid body and
virtual marker tracking, we have also added a 3D-printable model
which is shown in Fig. 2. Contributions from other users are welcome
too. Some brief information about the prerequisites are listed along
with set-up instructions in the README file as well: the user needs to
set up Matlab so it is able to compile C code and copy the latest version
of both the 32- and 64-bit Optotrak API files to the directories shown in
the instructions. In order to make sure that the local header files are
used, the user is also required to follow a simple tutorial that briefly
edits the C header files. When all is done, the user is required to run the
set-up script, which will detect the user's environment, and in case a

required condition is not met, guides the user about what to do. We
have included fully working examples and configuration files. There are
two code snippets in the appendix: Appendix A.1 shows how to re-
peatedly fetch a single frame of real-time position data from the system,
and Appendix A.2 shows an example implementation of the use of the
data buffer, which allows position tracking at higher frame-rates. Our
typical use of the Optotrak system and the toolbox is to align the co-
ordinate system prior to the experiment, use the buffer to store data
which is saved for each trial, and monitor a the real-time data while
recording. At the end of the trial, we convert the raw files to 3D posi-
tions, which we analyze further. It is possible to integrate the toolbox
with other environments. Fig. 3 shows the flow-chart of an example
visuomotor experiment.

4.1. How to install the toolbox

It is important to note that the toolbox has two prerequisites. First,
Matlab must have a supported C compiler installed that the toolbox can
make use of, and the Optotrak API files that have been purchased from
Northern Digital must be copied to their respective locations: the .dll
and .lib files to ‘bin’ directory of the toolbox, and the .h files to the
‘source’ directory within the toolbox. Second, the .h files need to be
edited following the instructions, which results in three lines of code
added. The exact instructions are available as a step-by-step guide in
the toolbox documentation. For legal reasons, we are unable to provide
the modified .h files ourselves. Once downloaded from our repository,
unzip the package to a directory and execute RUNME.m. Should a de-
pendency be missing, the script will provide meaningful error messages
and instructions.

4.2. Basic usage

There are working code and configuration files and their doc-
umentation included with the toolbox for a number of different mock
experiments. The registration and alignment procedure is shown in
detail separately. We suggest performing the registration and alignment
process prior to an experimental session, to create a camera file which
contains the accurately aligned global coordinate system. We re-
commend the creation of a new data acquisition configuration file for
each new experiment. This may be done by modifying one of the ex-
amples we provided with the toolbox code. Depending on the desired

Fig. 2. The 6-marker VolcicLab Rigid Body, with all markers installed and
connected to the Strober. In one of the examples included with the toolbox, we
assigned a virtual marker to the tip of the chopstick attached to the marker
holder.

Fig. 3. The flow-chart of an example visuomotor experiment.
The MOTOM toolbox can be integrated with other software,
such as Psychtoolbox. While the real-time data functions take
about 10ms to execute during which time the a render loop
will be held, recording position data to the Optotrak's buffer is
done concurrently with the rendering. This makes it possible
record marker positions at a higher sampling rate than the
frame rate of the stimulus.

Z. Derzsi, R. Volcic Journal of Neuroscience Methods 308 (2018) 129–134

132

https://github.com/volcic/motom-toolbox


frame rate, we believe that it is best practice to access real-time data
below the frame frequency of 80–100 Hz, and use the Optotrak system's
buffering data acquisition facility for frame rates above 100 Hz. During
the initialization of the Optotrak system, the toolbox will provide a
warning or an error message when there is a risk of buffer overflow. The
buffer usage depends on the length of the data collection time, number
of markers, and the frame rate.

5. Limitations

5.1. Performance

We found that fetching a single frame of real-time position data in
our set-up where we use two cameras and the SCU is connected to the
host computer via Ethernet, took around 10ms. Therefore, with real-
time data, frame skips will occur above frame rates of approximately
100 Hz. This can be detected by examining the returned values of the
serial number (or, frame-counter) of the captured frame. For applica-
tions that require high-speed tracking, we recommend using the data
buffer, and keep real-time data for monitoring purposes only.

5.1.1. Error management and features
Please note that while core functionality such as marker and rigid

body tracking has been tested thoroughly, other features such as the
functions regarding the Optotrak Data Acquisition Unit (ODAU) have

not been implemented. The rigid body orientation is only available in
the Euler angle format. Minor features such as switch state detection,
beeping, or the blinking of visible LEDs on devices have been im-
plemented, but not rigorously tested. We have compiled a list of API
functions in the online documentation to show in particular which
functions do work in the toolbox, and which functions do not.

6. Conclusions

We have presented a Matlab toolbox that allows users to drive the
Optotrak system without having to program in C or to leave the Matlab
environment. At the time of writing, it is the only toolbox that allows
the realization of a 64-bit Matlab-Psychtoolbox-Optotrak set-up. We
wrote several data handling functions in C that handle data correctly.
We also have added extra features, such as the creation of rigid bodies
and the tracking of virtual markers. The toolbox also has data visuali-
zation functions. We decided to share the source code in the hope that
other experimenters will benefit from an improved Matlab-Optotrak
interface.

Acknowledgements

We would like to thank NYU Abu Dhabi for funding the project, Ivan
Camponogara for the valuable information and testing during devel-
opment, and Carlo Nicolini for his version of virtual marker tracking.

Appendix A

Link to download the toolbox: https://github.com/volcic/motom-toolbox. For more information and examples, please refer to the online doc-
umentation and the examples directory included with the toolbox. Further examples of data acquisition configuration files are included as well. If
necessary for single-camera set-ups, the ‘standard’ camera files may be used, which gives positions in the factory-supplied global coordinate
system. However, we recommend aligning the coordinate system to suit the user's environment. Here, we have included two usage scenarios. Please
note that in order to run this code, a data acquisition configuration file is required. The documentation of the toolbox includes information on how to
create one. The included working examples contain these configuration files, which can be tailored to the experimenter's needs.

A.1 Obtaining 100 frames of real-time data

The following is a code snippet that shows a simple way of initializing the Optotrak system and then collect data.

% This example reads 100 frames of marker positions
% Frame rate, number of markers are in the config file

optotrak_startup; %this detects what hardware is available.
%The camera file contains the coordinate system alignment settings.
%The camera file may be set to 'standard’ for single-camera set-ups.
%The ’config file’ contains data acquisition settings.
optotrak_set_up_system(’path_to_camera_file’, ’path_to_config_file’);

%Optionally, read back how the system was initialised.
data_acquisition_settings = optotrak_get_setup_info;
%This is in a structure, flags are decoded as text.

%The markers are turned on by this point, so data can now be collected.
for frames = 1:100
%Collect 100 frames in this loop.
%Each row is a frame, columns are X-Y-Z triplets for each marker.
%Invisible markers will be triplets of NaN-s
[, framecounter(frames), positions(frames,:),] = DataGetNext3D_as_array;

end
OptotrakDeActivateMarkers; %Turn off the markers.
%Data is in positions(:,:), framecounter can be used to check sampling continuity.
optotrak_kill; %gracefully de-activate the system

Z. Derzsi, R. Volcic Journal of Neuroscience Methods 308 (2018) 129–134

133

https://github.com/volcic/motom-toolbox


A.2 Acquire data using the Optotrak's data buffer

Use of the toolbox in a typical visuomotor experiment. The following code illustrates which functions should be called in what order: Prior to an
experiment, we recommended performing a new registration/alignment. For the recording of raw data, this requires a working data acquisition
configuration file, and a working rigid body. We have included this_works_with_the_ndi_cube.ini, and ndi_cube.rig for the test cube
sold by Northern Digital. This creates a new camera file, which should be used with optotrak_set_up_system(). Afterwards, the visual part of
the experiment can be set up normally. Before starting a trial, initialize the data buffer file by calling DataBufferInitializeFile
(’temp.dat’). When the trial starts, start recording: DataBufferStart;. At the end of the trial, make sure everything is written into the file:
optotrak_stop_buffering_and_write_out;. After the end of the trial, stop the visual stimulus, and start the data conversion with opto-
trak_convert_raw_file_to_position3d_array(); This snippet shows how to use the data buffer, and convert a raw data file into 3D
positions. While buffering, it is possible to have access to real-time data simultaneously.

optotrak_startup; %this detects what hardware is available.
%The camera file contains the coordinate system alignment.
%The ’config file’ contains data acquisition settings.
optotrak_set_up_system(’path_to_camera_file’, ’path_to_config_file’);

DataBufferInitializeFile(0, ’raw_data.dat’); %Optotrak raw data goes here
DataGetNext3D_as_array; %Call this first if framecounter is to be used!
DataBufferStart; %This begins the recording

%The program can do something else in the meantime.
%Otherwise, this will wait until the buffering is finished.
%Real-time data is accessible while buffering.

[, framecounter, real_time_positions,] = DataGetLatest3D_as_array;
%framecounter can be used to track time and therefore marker speed.

optotrak_stop_buffering_and_write_out;

[, positions] = optotrak_convert_raw_file_to_position3d_array(’raw_data.dat’);
%in ’positions’, every row is a frame. Just like real-time data,
%marker coordinates are in X-Y-Z triplets as before.

%We can visualise a single frame or an entire trial using:
optotrak_plot_marker_positions(positions); %shows positions in a 3D volume
%It is possible to extract marker/rigid body data using this function:
%Say, markers 1, 2, and 4 are useful, so we can extract them.
useful_markers = optotrak_get_selected_triplet([1:2, 4], positions)
optotrak_kill; %Shut down the system gracefully.

References

Blinch, J., 2011. Controlling Optotrak from Matlab. (retrieved November 2017). https://
motorbehaviour.wordpress.com/2011/09/02/controlling-optotrak-from-matlab/.

Camponogara, I., Volcic, R., 2017. On-line adjustments of grasping movements under
visual, haptic and visuo-haptic guidance. J. Vis. 17, 460.

Chapman, C., 2012. Optotrak Motion Tracking System. (retrieved November 2017).
http://real.psych.ubc.ca/index.php/Optotrak_Motion_Tracking_System.

Fantoni, C., Caudek, C., Domini, F., 2010. Systematic distortions of perceived planar
surface motion in active vision. J. Vis. 10, 12.

Franz, V., 2004. The Optotrak Toolbox. (retrieved November 2017). http://www.
ecogsci.cs.uni-tuebingen.de/OptotrakToolbox.

Franz, V., Hesse, C., Kollath, S., 2009. Visual illusions, delayed grasping, and memory: no

shift from dorsal to ventral control. Neuropsychologia 47, 1518–1531.
Hesse, C., Franz, V.H., 2009. Corrective processes in grasping after perturbations of object

size. J. Motor Behav. 41, 253–273.
Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C., et al., 2007.

What's new in psychtoolbox-3. Perception 36, 1.
van der Kooij, K., Brenner, E., van Beers, R.J., Schot, W.D., Smeets, J.B., 2013. Alignment

to natural and imposed mismatches between the senses. J. Neurophysiol. 109,
1890–1899.

Volcic, R., Domini, F., 2016. On-line visual control of grasping movements. Exp. Brain
Res. 234, 2165–2177.

Volcic, R., Fantoni, C., Caudek, C., Assad, J.A., Domini, F., 2013. Visuomotor adaptation
changes stereoscopic depth perception and tactile discrimination. J. Neurosci. 33,
17081–17088.

Z. Derzsi, R. Volcic Journal of Neuroscience Methods 308 (2018) 129–134

134

https://motorbehaviour.wordpress.com/2011/09/02/controlling-optotrak-from-matlab/
https://motorbehaviour.wordpress.com/2011/09/02/controlling-optotrak-from-matlab/
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0010
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0010
http://real.psych.ubc.ca/index.php/Optotrak_Motion_Tracking_System
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0020
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0020
http://www.ecogsci.cs.uni-tuebingen.de/OptotrakToolbox
http://www.ecogsci.cs.uni-tuebingen.de/OptotrakToolbox
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0030
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0030
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0035
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0035
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0040
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0040
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0045
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0045
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0045
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0050
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0050
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0055
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0055
http://refhub.elsevier.com/S0165-0270(18)30214-0/sbref0055

	MOTOM toolbox: MOtion Tracking via Optotrak and Matlab
	Introduction
	Why write another Optotrak toolbox?
	Methods
	Global coordinate system manipulation
	Controlling the Optotrak system with the toolbox
	Rigid bodies, warp detection
	Virtual markers

	Installation, documentation, source code availability and examples
	How to install the toolbox
	Basic usage

	Limitations
	Performance
	Error management and features


	Conclusions
	Acknowledgements
	mk:H1_16
	A.1 Obtaining 100 frames of real-time data
	A.2 Acquire data using the Optotrak's data buffer

	References




