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Although product photos and movies are abundantly
present in online shopping environments, little is
known about how much of the real product experience
they capture. While previous studies have shown that
movies or interactive imagery give users the impression
that these communication forms are more effective,
there are no studies addressing this issue
quantitatively. We used nine different samples of jeans,
because in general fabrics represent a large and
interesting product category and specifically because
jeans can visually be rather similar while haptically be
rather different. In the first experiment we let
observers match a haptic stimulus to a visual
representation and found that movies were more
informative about how objects would feel than photos.
In a second experiment we wanted to confirm this
finding by using a different experimental paradigm that
we deemed a better general paradigm for future
studies on this topic: correlations of pairwise similarity
ratings. However, the beneficial effect of the movies
was absent when using this new paradigm. In the third
experiment we investigated this issue by letting people
visually observe other people in making haptic
similarity judgments. Here, we did find a significant
correlation between haptic and visual data. Together,
the three experiments suggest that there is a small but
significant effect of movies over photos (Experiment 1)
but at the same time a significant difference between
visual representations and visually perceiving products
in reality (Experiments 2 and 3). This finding suggests a
substantial theoretical potential for decreasing the gap
between virtual and real product presentation.

Introduction

When we see an object, we generally have a good
idea of what it would feel like (Baumgartner, Wiebel, &
Gegenfurtner, 2013; Bergmann Tiest & Kappers, 2007;

Xiao, Bi, Jia, Wei, & Adelson, 2016). This visual
prediction of haptic material properties has obvious
advantages for real world object interaction, but also
practical implications for retail companies that rely on
visual communication. If humans would be completely
incapable of predicting how products feel on the basis
of visual information, then the success of online
shopping would only be a fraction of what it is today.
Any visual representation of an object that reveals just
a little more than only its color will reveal at least
something of what it would feel like. But how much can
be predicted from a certain form of visual representa-
tion? How much useful information does a photo, a
video, or an (interactive) animation contain about the
haptic material properties? These questions appear key
to the online shopping applications, but are also
fundamental for the understanding of cross-modal
perception.

Bergmann Tiest, and Kappers (2007) showed that
correlations between visual and haptic estimates of
roughness are relatively high and of the same order as
correlations with various physical parameters of
roughness. Interobserver correlations within modalities
were stronger than correlations between modalities
indicating that there are some modality specific
differences in roughness estimation that are nonran-
dom. Additional evidence that vision and touch
estimate material properties in a similar fashion comes
from Baumgartner et al. (2013). Besides roughness
estimates, they considered eight other properties (such
as glossiness and hardness) and also included a
categorization task. Correlations between modalities
were strong for each of the nine material properties, but
categorization differed somewhat between the senses:
Haptics performed worse than vision.

Connecting visual appearance to mechanical and
tactile properties (such as stiffness and heaviness) is
especially important in automatic recognition of
properties of fabrics. In order to plan actions, a robot
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usually uses vision to estimate how a piece of cloth
would feel before touching. Recent work in computer
vision developed algorithms that can automatically
estimate mechanical properties of cloth from images,
and the consensus is that information extracted from
videos is more robust than those from still images.
Bouman, Xiao, Battaglia, and Freeman (2013) showed
that the human observers’ estimation of cloth stiffness
and mass were well correlated with the log-adjusted
physical parameter values when the video stimuli were
presented. Yang, Liang, and Lin (2017) used deep
learning neural network and combined the appearance
and motion information to classify cloth. Most
recently, Bi, Jin, Nienborg, and Xiao (2018) predicted
human perception of cloth stiffness using dense motion
trajectories extracted from videos. In the multisensory
domain, Yuan, Wang, Dong, and Adelson (2017)
trained Convolutional Neural Networks to match the
visual information such as color and depth images of
draping fabrics to the tactile information captured by
Gelsight tactile sensor (Johnson & Adelson, 2009).
They also showed that a system jointly trained on
vision and touch data can outperform a similar system
trained only on visual data when tested purely with
visual inputs, confirming the importance of multisen-
sory inputs on estimation of fabric properties.

In human vision, a more direct assessment of how
vision predicts haptics was used by Xiao et al. (2016).
This appears to be the first study to focus on how
different visualization styles affect visual and haptic
matching of materials. Using various fabrics in a
visual-haptic match to sample task, they found that
both color and 3D (draped vs. flat) information of the
images significantly improved performance. Note that
this match-to-sample task directly quantifies the
predictive power of a visual representation. The current
study uses this experimental paradigm as a starting
point to investigate the predictive strength of various
photos and movies of fabrics. However, before
zooming in on our study, we first discuss the applied
context: the domain of online shopping.

Marketing research has acknowledged relatively
early (with respect to the age of online shopping) the
potentially problematic absence of haptic information
in online shopping (Citrin, Stem, Spangenberg, &
Clark, 2003). At roughly the same time, the potential of
interactive information on online shopping was iden-
tified (Childers, Carr, Joann, & Carson, 2001). The
importance of haptic information for product evalua-
tion was shown to be strong but also characterized by
individual differences (Peck & Childers, 2003). While in
subsequent years evidence for the importance of
touching products steadily grew (Peck, Barger, &
Webb, 2013; Peck & Wiggins, 2006), actual interactive
graphics started to become available. Padilla and
Chantler (2011) designed an interface called ‘‘Shoo-

gleIt’’ that essentially lets a user scroll through a movie
file with a swiping movement on a touch screen. When
the movie (or image sequence) is cleverly shot, the
swipe movement mimics actual physical interaction
with a cloth (Atkinson et al., 2013). Furthermore,
Atkinson et al. (2013) showed that estimates of four
material attributes (roughness, thickness, elasticity, and
temperature) correlated significantly between real
touch and virtual interactive touch. Although it is
promising that visually mediated haptic information
relates to real haptic experience, the study relied
crucially on a certain attribute system and more
importantly did not include a baseline condition with a
simple static photo. Therefore, it is difficult to infer
what the added value of interactivity is. A different
study on the usefulness of interactive graphics showed
that users think that interactive graphics (in this case a
‘‘Shoogle’’) give more information about a textile
(Overmars & Poels, 2015), called ‘‘perceived diagnos-
ticity.’’ But a visualization that makes users believe that
the information is veridical is something different than
a visualization minimizing the difference between visual
prediction and actual haptic sensation. Other studies
showed that interactive communication influences
engagement (Blazquez Cano, Perry, Ashman, & Waite,
2016) or lets users believe the product can really be
touched (‘‘It seemed like I could touch. . .’’; Verhagen,
Vonkeman, Feldberg, & Verhagen, 2014). Whereas
convincing graphics may certainly increase sales, they
do not solve the fundamental problem of actually being
predictive. A product may look appealing, and the
consumer may feel like having a correct impression
(i.e., prediction), but when the real product does not
match this prediction, the visual communication has
obviously failed.

It appears that relatively many studies concerning
visual product communication in online shopping are
concerned with metaperception (reflections/thoughts
about sensations) rather than straightforwardly testing
the sensorial effectiveness. The reasons could be that it
is relatively cumbersome to test the sensorial predictive
performance. A match-to-sample task as used by Xiao
et al. (2016) is prone to ceiling and/or flooring effects.
For example, stimulus samples can be too easily
differentiable because of features that have little to do
with the material properties, resulting in 100% correct
scores for even the lowest quality communication (e.g.,
low-resolution black and white image). A match-to-
sample task is inherently sensitive to features giving
away the identity of a stimulus. The stimulus set we
used comprised of various jeans fabrics. Jeans generally
look rather similar, but can feel very different.
Therefore, it is an interesting stimulus material that is
not too easy to visually identify, but also not too
difficult.
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The main goal of the current study is to understand
whether movies better communicate tactile properties
than still images. Movement allows the communication
of more information and disambiguates the perception
of material properties in both human vision (Doersch-
ner et al., 2011; Wendt, Faul, Ekroll, & Mausfeld,
2010) and computer vision (Bouman et al., 2013;
Chakravarthi & Pelli, 2011; Yang et al., 2017). Yet,
using a movie implies choosing between the many
possibilities that could potentially reveal material
qualities less visible in a static picture. For example,
specific weight could be revealed by a freely moving or
falling cloth, the flexibility by spanning and bending the
fabric over a bendable shape, etc. To this end, we used
six different movie styles to understand what kind of
dynamic information communicates the material opti-
mally.

A secondary goal of this study is to understand what
experimental paradigms can be used to quantify the
effectiveness of a visual communication of tactile
properties. As discussed, most related studies have
made use of metaperception judgments (‘‘how diag-
nostic is this presentation?’’) instead of directly
addressing the effectiveness. In the first experiment we
used the match-to-sample task as proposed by Xiao et
al. (2016) but added a method that corrects wrong
matches based on the perceptual distances between the
stimuli. The perceptual similarities arising from this
method were subsequently used in Experiments 2 and 3
as an alternative to the match-to-sample method.

Experiment 1

In the first experiment we used a match-to-sample-
task to measure how well observers can identify a
haptic sample that matches a visual stimulus. The main
hypothesis is that movies (dynamic) contain more
information to perform this task than photos (static).
Since we did not a priori know what type of movie
would optimally communicate haptic properties, we
used six different movie versions.

Observers

Twenty observers (eight females, 12 males; mean age
23.2 years) participated in the first experiment. As will
be described later, a between subject design was used
resulting in two groups of 10 (each having four female,
six males; mean ages 23.3 and 23.1, respectively). They
received E10 compensation. Participants provided
written consent. The study was approved by the local
TU Delft ethics committee and in accordance with the
declaration of Helsinki.

Stimuli

Nine jeans samples were used as stimuli, shown in
Figure 1. They are all considered ‘‘jeans,’’ but they
varied considerably in smoothness, compliance, elas-
ticity, and weight. We did not measure any of these
attributes in terms of physical parameters. Further-
more, they varied in color and 2D textures, which is
obviously not of interest to the haptic modality but
could possibly influence visual judgments.

During the experiment, the fabrics hung in a box side
by side and were obscured to vision by a sheet of white
cotton (see Figure 2). Holes allowed for manual
exploration.The cloth samples were filmed in the
following six different ways:

Style 1: Cloth was stretched over a cylindrical foam
shape that was bent and straightened during the
movie (roughly resembling a limb joint rotation).

Style 2: The cloth hung down in midair while in the
middle of the bottom side a wire was attached.
During movie recording, this wire was lifted and
then released, so that the cloth fell down.

Style 3: A close-up was made of the texture of a
folded cloth that was moved with the hands
outside the field of view.

Style 4: Two (female) hands touched and wrinkled
the cloth. At the end of the wrinkling, the hands
released the cloth that unwrinkled into some static
equilibrium position. The movie was taken from
an overhead camera viewpoint (pointing down-
wards to the table).

Style 5: This was roughly similar to Style 4, except
that the viewpoint was more ‘‘first person,’’ having
the camera at chest height.

Style 6: Cloth was draped over a sphere, while the
camera was attached to a light source. The
camera/light source made a small (;208) rota-
tional movement around the cloth.

Figure 1. Pictures of the nine fabrics used in the experiments.

The picture was the final frame of movie Style 4, i.e., top view

of a crumbled cloth. The bottom three pictures were not used

as visual stimuli (but were available to touch) in Experiment 1.

Journal of Vision (2019) 19(2):4, 1–11 Wijntjes, Xiao, & Volcic 3

Downloaded from jov.arvojournals.org on 02/07/2019



Sample frames of the six movies styles are shown in
Figure 3. For each of the movies, a movie still was
chosen that appeared most informative and did not
contain motion blur.

Procedure

The experiment consisted of two parts. In the main
part the match-to-sample task was performed, and in
the second part haptic similarity judgments were
collected to define the perceptual metric between the
nine fabrics.

Observers first received a written instruction (to-
gether with the consent form) followed by a demon-
stration of the general procedure. Also, they were
allowed to haptically explore the visually obscured (see
Figure 2) stimuli before the start of the experiment.

On each trial, observers were shown a visual stimulus
(either a movie or photo, depending on the group) and
were asked to identify the matching haptic stimulus.
Haptic stimuli were randomly ordered and labeled
from 1 to 9. Identification took place by selecting one
of the nine screen buttons with a track pad, as shown in
Figure 2. If observers changed their minds during the
experiment, they could go back and change their
answer, which occurred once in a while. To avoid
getting the last answer for ‘‘free’’ by simply choosing
the cloth that was left, we only showed a subset of six

different cloths. Thus in each block, observers were
visually presented with six cloths (each block the same
six cloths) and could choose among nine haptic stimuli.
In total, the number of match-to-sample trials
amounted to 36 (6 movies/pictures 3 6 styles).

After the six blocks we ran a similarity estimation
task. The observer saw two label numbers on the screen
that indicated the haptic stimulus pair. The observer
was asked to estimate the perceptual dissimilarity on a
continuous scale ranging from 1 (same) to 10 (differ-
ent). Each pair was presented resulting in 36 trials.
These data were later linearly rescaled to 1 (same) and 0
(different) to serve as a perceptual metric. Observers
varied in the range they used for their similarity
judgments, from 72% to 100% of the full scale length,
rather evenly distributed with a mean of 88%. Thus, a
rather large region of the scale was used.

Data analysis

The haptic similarity data were used as an error
metric to transform the raw matching data in
perceptual matching data. For example, if sample 2 was
shown on the screen, and sample 5 was chosen, and
their similarity score was 0.82, then 0.82 was the

Figure 2. Experimental setup. In the wooden box, behind the

curtain, nine fabrics hung indicated by the nine labels.

Observers could feel the fabrics through the holes. Behind the

box, a computer screen displayed the visual stimuli.

Figure 3. Movie frames of the six different movie styles.
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‘‘accuracy’’ of the match. For matches that were
correct, a score of 1 was assigned. The error metric
allowed for a fair comparison of judgments because our
natural stimuli may not be homogeneously distributed
in some conceivable feature space. We used the
similarity data on an individual basis; except for four
observers we used the mean similarity data (because
their similarity data were missing).

Results

The data averaged over 10 observers per condition
are shown in Figure 4. To quantify chance level, we
took the means of the similarity scores. For a diagonal
matrix (in case of uncorrected data, not applying the
metric), chance level would be 1/9, but for the actual
similarity data (1 ¼ similar, 0 ¼ dissimilar), the
particular chance level was 0.52 (indicated by a dashed
line in Figure 4). As can be seen, the dynamic
presentations (dark gray bars) in all styles result in a
higher identification performance than the static
presentations. A Mann-Whitney test between the static
and dynamic conditions revealed a significant effect (n1
¼ n2 ¼ 10, U ¼ 77, p¼ 0.023, one-tailed) with average
performance scores of 0.70 (dynamic) and 0.63 (static).
To quantify whether this advantage of movies over still
images was present on an individual movie style level,
we performed separate Mann-Whitney tests for each of
these six conditions. Initially, only Style 4 revealed a
significant effect, but after correction for multiple
comparisons no individual effects were present. To
assess performance differences among the various
movie styles, we conducted a Friedman test on the
dynamic data, averaged over cloths and with movie
style as independent variable. This resulted in a
nonsignificant effect, v2(5)¼ 3.2, p ¼ 0.669, implying
that no performance difference was found between the

movie styles.We applied the Mann-Whitney tests also
to the raw data and found no significant effect of
dynamic versus static (n1¼ n2¼ 10, U¼ 56, p¼ 0.338,
one-tailed). The absence of a significant effect in the
raw data and presence in the (similarity) corrected data
motivated us to perform a third test. The main data
analysis was performed on data that were corrected by
an individual similarity metric: For each (with four
exceptions as described in the method section) observ-
er, the similarity data were used as a metric for the
matching results. To understand the importance of
using the individual metrics, we performed the third
Mann-Whitney test on the data that were corrected
with the average similarities, i.e., one metric applied to
all matching data. Also in this case, we failed to find a
significant effect (n1¼ n2¼ 360, U¼ 65, p¼ 0.137) for
mean performances of 0.67 (dynamic) and 0.64 (static).

Discussion

Before discussing the main finding, we will briefly
discuss the match-to-sample paradigm. The usefulness
of a match-to-sample task critically depends on the
stimulus set. If the task is too easy (e.g., when clearly
distinct fabric categories are used such as leather,
canvas, silk, neoprene, etc.), then performance will be
at ceiling irrespective of the quality of the visual
communication. On the other hand, when the task is
too difficult, random responses will also not reveal any
interesting difference of our independent variables. As
can be seen in our results, the choice of jeans fabrics
turned out successful: Neither floor nor ceiling effects
mask potential effects within the data. Furthermore,
applying the (individual) similarity metric to the raw
data increased the sensitivity of our statistics (i.e., they
show the effect in the expected direction).

Our hypothesis was confirmed: movies reveal more
about how fabrics feel than photos. Observers were
better able to identify the haptic fabric samples on the
basis of movies than on the basis of still images. The
finding does not come as a surprise as it has been
previously shown that dynamic information is impor-
tant for material perception (Doerschner et al., 2011;
Wendt et al., 2010). Our finding supports a general-
ization of these previous findings.

Yet, the beneficial effect was not overwhelming and
also only visible when we averaged the data over all six
movie styles. On an independent movie level, no
performance improvements were found. Furthermore,
since we used a still image from the movie, it is possible
that the effect is influenced by this choice. Although we
did our best in choosing a meaningful still image, we
cannot exclude this possibility. Also, a significant effect
between images and movies was only found when we
used the individual similarity judgments to adjust the

Figure 4. Results of Experiment 1. On the x axis, the six different

movie styles are shown. Dark bars denote dynamic conditions,

light bars static. Error bars denote standard errors of sample

mean. The dashed line indicates chance level; see main text for

an explanation.
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matching responses. It is difficult to dissociate whether
this implies that using individual metrics does indeed
reveal an effect more subtle than present in the raw
data, or that it randomly affects the data and causes an
effect by chance. Yet we believe it is rather plausible
that individual differences in haptic fabric perception
exist and that they should be taken into account.

To gain more evidence for our hypothesis that
movies communicate haptic material properties better
than photos, we decided to run a second experiment.
We conjectured that the haptic similarity data from
Experiment 1 could be compared with visual estimates
of haptic similarities. This is a rather different
paradigm than the match-to-sample experiment: In-
stead of analyzing direct comparisons between haptics
and vision, we now want to analyze relative differences
within modalities and see if these are similar across
modalities. If haptic similarity judgments based on
movies correlate better with the actual haptic similar-
ities than judgments based on photos, this would
strengthen our claim. A second reason for this
experiment is that for future studies with a similar
question (‘‘which visual representation optimally com-
municates how products feel?’’) it could be a more
practical experimental paradigm than the match to
sample task. For a set of products, baseline haptic
similarity judgments can be collected in a local lab
setting, whereas a variety of visual explorations can be
tested online. There is only one haptic experience, but
the possibilities for designing visual representations are
infinite. Also, since relative judgments are asked, it
could be that floor or ceiling effects play a lesser role
than in match-to-sample tasks, although that is not a
problem in the current study.

Experiment 2

In the visual equivalent of the haptic similarity
judgments from Experiment 1, observers have to judge
whether two samples visually appear to feel similar. Thus,
observers are explicitly instructed to form a prediction of
the haptic sensation on the basis of visual information.
This yields n(n� 1)/2¼36 pairwise comparisons that can
be compared between conditions (such as a haptic and
visual condition) but also internally: If observers
correlate well with each-other, that could imply that
perception is unambiguous, and vice versa.

Method

Participants

For the haptic similarity judgments, data were used
from the observers of Experiment 1. For the visual
dynamic similarity judgments, nine observers partici-

pated (two males, seven females; mean age 23 years).
For the visual static similarity judgments eight ob-
servers participated (four females, four males; mean age
23 years). All gave their written consent and were
reimbursed for their participation. Participants pro-
vided written consent. The study was approved by the
local TU Delft ethics committee and in accordance with
the declaration of Helsinki.

Stimuli

All movie/photo styles except number 3 were used in
this experiment. The stimuli were presented in pairs on
a computer screen. The reason is for excluding Style 3
was pragmatic (we had only six movies and were unable
to shoot the remaining three).

Procedure

Observers were instructed to ‘‘estimate how similar
(a pair of fabrics) would feel’’ on the basis of what they
were visually presented. The experiment was dived in
five blocks in which a specific style was presented; block
order was counterbalanced (as far as possible). In each
block, the observer made 36, 9(9� 1)/2, judgments,
thus resulting in a total of 180 trials per observer. A
continuous rating scale was used ranging from 1 (same)
to 10 (different), with ticks at integer positions.

Results

We compared the data across the three conditions
(haptic, movie, and photos). For each pairwise
judgment, the average value was computed per
condition, across styles. This results in 36 values per
condition that are plotted against each other. Results
are shown in Figure 5. Correlations between both
visual conditions and the haptic condition were low (r¼
0.18 and r ¼ 0.13 for movie and photo conditions,
respectively) and not significant (p ¼ 0.291 and p¼
0.488, respectively). The correlation between movie and
photo conditions (two different groups of observers)
was high and significant (r¼ 0.923, p , 0.0001). We
also computed correlations between haptic and visual
conditions per movie style. All correlations (N¼ 10)
were not significant except between haptic and Style 6
movie (r ¼ 0.330, p¼ 0.0488). However, when
correcting for multiple comparisons, also this correla-
tion failed to be significant.

Discussion

There was no correlation between what was seen,
and what was felt. Instead of finding more evidence for
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our hypothesis that movies are better than pictures, we
found that neither movie nor picture similarity
judgments correlates with haptic similarities. On the
one hand, this result is surprising because it contrasts
with our previous finding. On the other hand, a finding
like this is conceivable when considering that the
similarity judgments are less direct than match-to-
sample estimates. For a match-to-sample estimate, the
material feature set of one stimulus is compared to that
of another stimulus, across two modalities. Although
this process is likely complex (which features are
present in both modalities, how are they weighted, etc.),
the outcome relies on one comparison step. For
similarity judgments, the feature comparison is similar
(but maybe less complex because it takes place within
modalities), yet the outcome relies on the comparison
of the two modality-specific comparisons, i.e., two
computations. Thus, the match-to-sample might be less
prone to noise (only based on one comparison) than the
similarity judgments (comparison between within-
vision similarities and those within touch).

If the match-to-sample task is a more direct
performance measurement, it would imply that the
similarity estimation paradigm is less sensitive in
revealing an underlying effect than the match-to-
sample paradigm. Another possibility is that observers
attend to a different material property set when asked
to visually estimate how a stimulus feels than when it is
actually touched.

The difference we found in Experiment 1 was
relatively small. It could be that the movie quality is
partly responsible for the relatively small effect. As
previously mentioned, the possibilities for visually
representing products are endless. The quality differ-
ence between an amateur like the first author and a
professional photo/videographer can be substantial.
We conjecture that designing a better visual commu-
nication would also reveal an effect using the similarity
judgment paradigm. Yet, testing all possibilities would
be endless.

As an alternative, we chose to take a step back from
the production of visual representations, and perform
an experiment where observers are seeing (but not
touching) the stimuli in reality. In Experiment 2 we

found no correlation between haptic and visually
estimated similarities, which contradicts findings from
Experiment 1. If the similarity paradigm is less
sensitive, then it could still show an effect when the
‘‘signal’’ is stronger, i.e., when we would have a higher
quality visual representation. The obvious candidate
for a better visual representation than the pictures and
movies we used in Experiments 1 and 2 is clearly reality
itself. On the other hand, if the problem is with the
similarity paradigm and not with the visual represen-
tation, increasing the quality of the visual stimulus
would not have an effect.

Therefore, we replicated Experiment 2, but now in a
different setting where observers observed other ob-
servers interacting with the fabric in a live fashion.
There were few restrictions for the noninteracting
observers (i.e., they also had audio information) except
that they could not actually touch the fabrics.

Experiment 3

Our purpose was to recreate Experiment 2 in reality
without mediation of photos and movies. To this end,
we designed an experiment with pairs of observers
seated opposite to each other. One observer manually
explored fabric pairs and was also able to see (and hear)
the interaction. The observer seated opposite could see
and hear the same (although from an opposite
viewpoint) but was not allowed to touch the fabrics.

Participants

Eighteen observers (10 males, eight females) partic-
ipated in this experiment. The mean age was 32 years.

Stimuli and procedure

We used the same nine fabrics from the previous
experiments. As shown in Figure 6, observers were
seated opposite each other. The ‘‘interacting’’ partici-
pant sat on the left side, the ‘‘observing’’ participant on
the right. Before each trial, the experimenter placed two

Figure 5. Correlation plots of similarity judgments in Experiment 2 for the three pairs of conditions. As can be seen in the first two

plots, there is hardly any correlation between visual and haptic estimates. The last plot shows that visual conditions correlate strongly.
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fabrics in front of the interacting participant. He or she
was instructed to explore the fabrics to assess the haptic
similarity. Observers were explicitly instructed not to
communicate with each other, which the experimenter
verified through observing them. The ‘‘observing’’
participant was instructed to assess the haptic similarity
without touching. Judgments were performed simulta-
neously. The trackpad of the ‘‘interacting’’ observer
was invisible to the ‘‘observing’’ participant. Although
this experimental setting allows the participants to see
each other, the experimenter did not find any sugges-
tion that they were attending to each other’s facial
expressions. Verbal communication was forbidden.

Results

The results are shown in Figure 7. The correlation
between interacting observers and (purely) haptic
similarity data from Experiment 1 was high and
significant (r ¼ 0.871, p , 0.0001). Crucially, the
similarity estimates of participants that could only
observe the other participant interacting with the fabric
also correlated significantly (r¼ 0.651, p , 0.0001) with
the baseline haptic data from Experiment 1. In line with
this result, the correlation between observing and

interacting was of the same magnitude (r¼ 0.622, p ,
0.0001).

Discussion

We found a significant relation between nonhaptic
(the observation condition) and haptic similarity
judgments. This finding contrasts with Experiment 2 in
which we relied on the mediating role of our movies;
whereas here in Experiment 3 we let participants
observe the fabrics directly. Thus, it is possible to infer
haptic similarities on the basis of nonhaptic informa-
tion. The difference between Experiment 1 and 2 was
the experimental paradigm, and the difference between
Experiment 2 and 3 is the visual representation. The
discrepancy between finding a significant difference
between movies and pictures in Experiment 1 and not
finding this effect in Experiment 2 can thus only be due
to a change of paradigm. Yet, Experiment 3 tells us that
the similarity paradigm is able to reveal a significant
correlation between a haptic and nonhaptic condition.
This supports the validity of the similarity paradigm.
Together, it suggests that the similarity paradigm is
valid, but possibly too weak in revealing an effect when
specifically using the visual representations from
Experiments 1 and 2. The correlation of similarity
judgments between haptic and visual conditions in-
creased from nonsignificant 0.18 and 0.13 for movie
and photo conditions, respectively, to a much stronger
correlation of 0.65 in Experiment 3. In all experiments
the same nine cloths were used, so the correlation
increase is very substantial. It shows that the similarity
paradigm is able to reveal correlations between
modalities.

General discussion

We found that dynamic visual information (a movie)
reveals more about how fabrics feel than static visual
information (a picture). An attempt to replicate this
finding using a different experimental paradigm was
unsuccessful: In Experiment 2 we found no facilitating

Figure 6. Experimental setup of Experiment 3: Two participants

sat opposite each other, and both performed similarity

judgements on cloth pairs. The ‘‘observing’’ participant was not
allowed to touch.

Figure 7. Correlation plots of Experiment 3.
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effect of movies over pictures; we found no correlation
between vision and haptics at all. When we directly
tested the similarity estimation paradigm on actually
seen (but not touched) fabrics in reality, we did find a
strong correlation between haptics and vision. Overall,
this study shows not only that movies improve visual
estimation of haptic material properties (Experiment
1), but also that the type of movie, or communication
in general, should be improved to be as realistic as
possible (Experiments 2 and 3).

In a related study Xiao et al. (2016) found that visuo-
haptic matching improved when color information was
present, and when fabrics were draped instead of
flattened. Whereas the contribution of color is more of
fundamental interest, the influence of draping has
practical implications. In the current study, we wanted
to continue improving visual representations of fabrics
by investigating the role of movement. This ‘‘move-
ment’’ could be a variety of styles, falling, crumbling,
bending, or rotating. Although we thought the variety
was rather large, the performance results were all very
close. Yet, there are many possibilities that may
improve the communications. Since in Experiment 3 we
found that seeing the fabrics in reality facilitates
perceptual performance, but no effect in Experiment 2,
there is likely much to improve for our movies. Seeing a
product in reality gives ‘‘infinite’’ resolution, no
dynamic range problems, no color reproduction
problems, perfect binocular disparities, and of course
realistic sounds. Although seemingly trivial, it is not
very easy to develop a graphics pipeline that copes with
each of these facets. On the other hand, if future studies
use this reality condition and systematically measure
the contribution of the various cues (such as audio or
binocular vision), this could lead to a well-informed
design that only uses the essential ingredients.

Another reason for the different results of Experi-
ment 2 and 3 could be that the hand movements made
in Experiment 3 were actually made by other observers
doing the same task. In other words, these were
motivated movements whereas the various movements
in Experiment 2 were more objective: The movements
without hands were all conducted similarly and the
hand movements were performed by a person who was
not doing any perceptual judgment. In a recent study,
Yokosaka, Kuroki, Watanabe, and Nishida (2017)
found that visually observing explorative hand move-
ments facilitated material inference. Thus, another way
of approaching online product presentations is care-
fully observing, recording (and maybe transforming)
the purposeful interactions people have with real
products. This finding could also inspire future
computer vision algorithms that estimate material
properties from active touching videos. For example, a
robot could better learn about fabric haptic properties
from watching humans handling the fabric by hands

instead of simply watching videos of ‘‘what has been
done to the fabrics.’’ Indeed, recent work in computer
vision shows it is possible to develop algorithms to
predict what a person wants to do by observing ‘‘hand
movements’’ (Fermüller et al., 2017).

Besides being an interesting solution to the problem
of choosing any form of visual representation, using the
relatively uncontrolled stimulus presentation of live
fabric interaction has certain disadvantages. For
example, the interacting participants may spend more
time on assessing similar fabric than on dissimilar
fabrics. Thus, the observing participant could use
exploration time as a cue, which by itself is not an
informative cue for haptic fabric properties. We used
nine participants interacting with the fabrics and nine
other participants observing the fabric interactions. It
appears implausible that the interacting participants all
followed the pattern of longer time for dissimilar
fabrics while the observing participants would at the
same time select this pattern as a cue for dissimilarity.
In other words, the experimental design likely mitigated
the effect of this potential confound. Interestingly, this
hypothetical problem would not arise when doing a
match to sample task where the visual representation
would be replaced by a live interacting participant.

Draping fabrics is already common practice in
fabric/product photography, and also movies are
sometimes used to display products online. Our results
indicate that movies may indeed facilitate perception.
There are also other possibilities to represent products
online, such as touch screen interactions originally
proposed by Padilla and Chantler (2011). Whereas
these have been shown to be perceived as diagnostic/
informative (Overmars & Poels, 2015), there have been
no studies actually testing the effectiveness of these
novel visual communication designs. Thus, a natural
extension of the study presented here would be to test
interactive forms of communication. Our study pro-
vides useful paradigms that could facilitate the
evaluation of these investigations. Part of the reason we
wanted to test the similarity estimation paradigm in
Experiment 2 was because of its ‘‘scaling’’ potential:
Since the haptic and visual parts are separated, the
haptic similarities can be measured in the lab while the
visual experiments can be run online.

Understanding the relation between reality and its
depiction (whether it is a sketch, painting, photo,
computer rendering, hologram, or any future visual
invention) is of fundamental interest to broad and
diverse audience, from philosophy to the online
shopping industry. Every day, people are confronted
with a real, physical object that they only knew from its
depiction. Although this happens so often, there is little
known about the relation between reality/depiction
discrepancies and the quality of depicting. The current
study contributed to the understanding of this relation
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by zooming in on a particular product category and
testing two experimental paradigms and various
depictions. It appears promising that movies commu-
nicate better how fabrics feel than pictures, but finding
the optimal visual representation that captures reality
as close as possible remains a future challenge.

Keywords: material perception, fabrics, online
shopping, cross-modal transfer, haptics
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